

Unsupervised Harmonic Parameter Estimation Using Differentiable DSP and Spectral Optimal Transport

Bernardo Torres Geoffroy Peeters Gaël Richard

LTCI, Telecom Paris, Institut Polytechnique de Paris

Differentiable Digital Signal Processing (DDSP): training neural networks to estimate parameters of signal models (e.g sinusoidal frequency, amplitudes) using synthesis and reconstruction.

Main takeaways

Spectral Optimal Transport (SOT) compares audio measuring frequency displacement of spectral frames

Improves pitch accuracy and reconstruction error when estimating jointly the f_0 and amplitudes of a DDSP harmonic synthesizer (no supervision)

Overview

IIIII-AUDiO

erc

! Sensitive to spectrum normalization and leakage

How does Spectral Optimal Transport work?

$$\mathcal{L}_{\text{SOT}}(s, \hat{s}) = \frac{1}{L} \sum_{j=0}^{L} \mathcal{W}_p(\mathbf{S}_{\gamma}^{2(j)}, \hat{\mathbf{S}}_{\gamma}^{2(j)})^p$$

CDF: $F_{\alpha}(t) = \sum_{i=1}^{n} u(t - x_i) \mathbf{a}_i$ Quantile function: $F_{\alpha}^{-1}(r) = \inf \{x \in \mathbb{R} : F_{\alpha}(x) \ge r\}$

Unsupervised harmonic parameter estimation autoencoder

Results

linear loss (\mathcal{L}_{lin}) log loss (\mathcal{L}_{log}) Baseline: Multi-Scale spectral loss: $\mathcal{L}_{MSS}(s, \hat{s}) = \sum_{\gamma \in \Gamma} \left\| \mathbf{S}_{\gamma} - \hat{\mathbf{S}}_{\gamma} \right\|_{1} + \left\| \log(\mathbf{S}_{\gamma}) - \log(\hat{\mathbf{S}}_{\gamma}) \right\|_{1}$ **Synthetic dataset** varying f_0 , harmonic amplitudes, and # of harmonics ([1-8])

Evaluation on pitch estimation and reconstruction metrics

	Variations				Mean/Median (STD) test metrics (5 runs)		
\mathcal{L}	γ ($\mathcal{L}_{ ext{sot}}$)	Γ (\mathcal{L}_{Lin})	LogF	$f_{\rm cut}$	LSD [dB]↓	RPA [%] ↑	RCA [%] ↑
LIN MSS	_	$\Gamma_0 \\ \Gamma_0$	_	_	46.4 /58.0 (21.4) 80.5 /82.6 (15.1)	20.2 /0.2 (44.6) 1.4 /0.1 (2.7)	26.9 /3.9 (42.7) 4.0 /3.2 (4.5)
SOT SOT SOT SOT	2048 512 512 2048 2048	Γ_0 Γ_0 Γ_0 Γ_0 $\{512\}$	\times \checkmark \checkmark \times \times	$ \begin{array}{c} \checkmark \\ \checkmark $	23.5 /24.5 (3.5) 40.5 /26.6 (23.5) <u>25.9 /25.0</u> (2.5) 70.6 /77.6 (31.8) 97.9 /101.1 (32.5)	75.0 /99.7 (43.2) 42.9 /63.6 (39.4) <u>55.4 /63.7</u> (36.1) 23.7 /20.0 (30.3) 14.1 /4.7 (25.5)	99.2 /99.8 (1.6) 62.3 /75.2 (42.6) <u>86.8 /95.6</u> (16.2) 46.0 /45.0 (36.4) 28.6 /11.6 (32.6)

× High sensitivity to initialization (specially MSS baseline) ✓ SOT improves on MSS

Larger window size, logarithmic frequency scaling and frequency cutoff \rightarrow improved metrics

! Uncertainty in the number of harmonics \rightarrow tricky optimization