Singer Identity Representation Learning Using Self-Supervised Techniques

Bernardo Torres\(^1\), Stefan Lattner\(^2\), Gael Richard\(^3\)

\(^1\) LTCI, Telecom Paris, Institut Polytechnique de Paris. \(^2\) Sony Computer Science Laboratories Paris

Introduction

Goal: obtain time-invariant identity representations from singing voice

- Existing models from speech literature
- Train identity extraction encoders
- Lack of large labelled singing voice datasets

How well do models trained on speech generalize to singing voice?

Can we train better models using Self-supervised Learning (SSL)?

Overview and training

- **I - Draw recording**
 - Large dataset of unlabeled 44.1 kHz isolated vocal tracks
 - Not trained
 - Trained
 - Not trained for BYOL only

- **II - Crop**
 - 4s
 - Augment
 - Log-Mel Spec
 - Encoder
 - Projection

- **COLA-like (Bardes et al., 2021)**

- **III - Encode recording**

- **IV - Form batch**
 - Draw, crop and encode other recordings

- **V - Optimize SSL losses**
 - Unit hypersphere
 - Maximize similarity of similar clips
 - Common to all employed SSL techniques

- **VI - Discard projection after training**

- **Self-supervised techniques**

 Common idea: representations from the same recording should be close

 We trained models with the following SSL techniques:

 - **Contrastive** (Chen et al., 2020)
 - **Uniformity-Alignment** (Wang et al., 2020)
 - **VICReg** (Bardes et al., 2021)

 BYOL (Grill et al., 2020)

 1. Weights of bottom branch updated with Exponential Moving Average of top branch
 2. Replace Projection by Predictor

Evaluation

Singer identification

Linear classifier

- Equal Error Rate (EER)

- Trained on embedding space (frozen encoder)

- Test accuracy of N-fold cross validation

- Rank ground-truth match by similarity with query

Results

Singer similarity (lower is better)

- Comparison
 - A big gap still exists for challenging datasets
 - Release of code and trained models

Evaluation

- Baselines
 - Work reasonably well except for VocalSet
 - Comparable or superior to baselines

Trained SSL models

- Best In-domain: VocalSet

Quality analysis

- Left: Average similarity score between singers over 100, 4s clip draws for each singer (M4Singer dataset)

- Right: T-SNE visualization for the same embeddings in 3D (original dimensionality is 1000)

Conclusion

- Trained identity encoders using Self-Supervised Learning (SSL)
- Dataset: unlabeled isolated singing voice recordings
- Comparison with publicly available pre-trained speech models
- Evaluation on singer identification and similarity tasks
- A big gap still exists for challenging datasets
- Release of code and trained models